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Abstract 

It is shown that the expressions for the contributions of 
the internal modes of molecules to the Debye-Waller 
factors as derived, on the one hand, by means of lattice 
dynamics and, on the other hand, by means of the FG 
method common in spectroscopy, are identical after 
some approximations have been made in the lattice 
dynamical formulation. It is pointed out that for those 
methods of establishing the force constant matrix of the 
internal modes, where the eigenvalues of the FG matrix 
are constrained to be the squares of the observed 
frequencies, only standard eigenvector routines need be 
applied in determining the mean-square-amplitude 
matrix. Hence, in this case, series expansions which 
were suggested to circumvent the determination of 
eigenvalues are superfluous. 

1. Introduction 

The calculation of the contributions of the internal 
modes of molecules to the Debye--Waller factors 
should follow a theory of the crystal (lattice dynamics), 
but, as a rule, crystallographers adopt the FG method 
which was established in spectroscopy and refers to 
isolated molecules. If one starts from the equations of 
lattice dynamics and eliminates the typical (inter- 
molecular) crystal effects, the equations of lattice 
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dynamics should become equivalent with those of the 
FG matrix formalism. This equivalence, which is not 
obvious, will be proved in this paper. 

In a further part of the paper, we show how the 
formalism of the FG method can be simplified by intro- 
ducing standard eigenvector routines. The mean- 
square-amplitude matrix of the internal modes of the 
molecules then can often be obtained in a simple 
fashion, and the series expansions proposed (Cyvin, 
1968; Oystein, 1972) are superfluous. 

2. The lattice dynamical approach 

Here we make use of the description which was 
developed in earlier work (Scheringer, 1972a,b). The 
3n x 3n mean-square-amplitude matrix U of the n 
atoms in the unit cell is given by 

U = N - 1  Q ~ (RA -t r~)q QT. (1) 
q 

The superscript T denotes the transposed matrix, - 1  
the inverse, and ~ the conjugate complex transposed 
matrix. N is the number of cells in the crystal, Q a 
3n x 3n diagonal matrix, with the 3 elements m; v2 for 
the rth atom (mr = mass). A(q) is a 3n x 3n diagonal 
matrix containing, as elements, the squares of the 
frequencies toj(q), q denotes a wave vector of the 
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crystal. R(q) are unitary matrices containing the eigen- 
vectors of the mass-normalized dynamical matrices 
M(q), i.e. 

M = RAft, (2) 

for all q. F(q) in (1) is a 3n x 3n diagonal matrix, and 
its elements are the mean thermal energies of the 
normal modes. We define the diagonal matrix A = 
A-~ F with the elements 

AJ(q) - 2coj(------~ coth\ 2k, T ]' (3) 

where T is the temperature, and k B Boltzmann's 
constant. To obtain the mean-square amplitudes of the 
internal modes from (1), we make the following 
assumptions: (1) the internal and external modes of the 
molecules are uncoupled, (2) the dispersion of the 
internal-mode branches in the crystal can be neglected, 
(3) the hybridization of the internal modes of the 
isolated molecules, which occurs in the crystal 
branches, does not alter the mean-square amplitudes of 
the atoms (Scheringer, 1972b; Venkataraman, 
Feldkamp & Sahni, 1975, p. 92). None of the 
assumptions holds rigorously. For high frequencies (1) 
and (2) are reasonably valid, but for frequencies < 200 
cm -t, coupling between internal and external modes is 
likely to occur. Similarly, for the low-frequency 
branches, neglect of dispersion cannot be assumed, see 
the calculations presented by Decius & Hexter (1977, 
Fig. 6-8). Hybridization of the internal modes of the 
isolated molecules always occurs to some extent when a 
crystal is formed. However, since the atomic displace- 
ments are obtained by summing over the contributions 
from all branches, the change in the mean-square 
amplitudes of the atoms due to hybridization is 
probably small. Making use of these three assumptions, 
we can replace the average over all wave vectors q by 
q = 0, and restrict our consideration, to one molecule in 
the unit cell. It may consist of n atoms. Then we obtain 
from (1) for the internal modes of the molecule 

Uint = QRAR r Qr. (4a) 

Now R is real, i.e. R = R r = R -1. In (4a), A contains 
3n - 6 diagonal elements Aj of (2) (for q = 0) for the 
3n - -6  internal modes. The contributions of the 
external modes which are always present in the crystal 
(for I ql > 0) must be excluded in (4a). Formally, we 
achieve this by setting the remaining six elements Aj 
equal to zero for all wave vectors q. Thus Ul, t is 
singular, and of rank 3 n -  6. In the same way we 
exclude the eigenvectors of the external modes, and 
achieve this by reducing R to a 3n x (3n--6)  
rectangular matrix Rln t. If we also reduce A to a 3n - 6 
diagonal matrix Alnt, we obtain from (4a) 

Ulnt : QRint/~tnt R~nt Qr. (4b) 

Finally, with the exclusion of the external modes, we 
can also write for the mass-normalized dynamical 
matrix (for q = 0) 

Mint = RAR r = Rint Aint Rint , T  

where Mlnt is also singular and of rank 3n - 6. 

(5) 

3. The spectroscopic approach 

Here we follow the formulations given by Cyvin (1959, 
1968) and sum up the FG method as follows. Let u be 
the 3n vibrational coordinates of the n atoms in a 
molecule expressed in a Cartesian reference system and 
S the 3 n -  6 symmetry coordinates of the internal 
modes, then the matrices B and A are defined by 

S = B u ,  u = A S ,  (6) 

where 
A = QQr B r G-Z, (7) 

and 
G = BQ(BQ) r, (8) 

see also Decius & Hexter (1977, p. 36). G -t is the 
kinetic energy matrix referred to the 3n - 6 symmetry 
coordinates S. In practice, first B is set up and then G 
and A are calculated from B. Let F be the force 
constant matrix of the internal modes referred to the 
symmetry coordinates S and E the unit matrix, then the 
secular equation is given by 

d e t ( F - A j . l , t G - l ) = 0 ,  j =  l , . . . 3 n -  6. (9) 

The eigenvalues Aln t can be obtained by means of the 
(3n - 6) x (3n - 6) matrix L which formally diagon- 
alizes FG, i.e. 

L r FGL r-1 = Ain t. (10) 

Since FG is not symmetric, L is not orthogonal. With 
(9) and (10) we further obtain 

L r G-l L = E, L r FL = Aint, (11) 

i.e. also G = LL r. With L, the mean-square-amplitude 
matrix referred to the symmetry coordinates S is given 
by 

]~ = (SS r) = LAin t L r (12) 

(Cyvin, 1959, equation 12). The 3n x 3n mean-square- 
amplitude matrix referred to the Cartesian coordinates 
u is then obtained by transformation, i.e. 

Uin t = (uu r) = AI~Ar 

= Q(G -t BQ) r LAin t Lr(G -t BQ) Qr. (13) 

4. Proof of  equivalence 

The equivalence of (4) and (13) is not obvious. In the 
lattice dynamical treatment, first the dynamical matrix 
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M is set up, second, the eigen-values and -vectors are 
calculated and, third, the external-mode contributions 
to U are excluded by Aj = 0. In the spectroscopic treat- 
ment, first the ( 3 n -  6) x ( 3 n -  6) matrices F and G 
are set up, second, the eigenfrequencies and L are 
calculated and, third, the system is extended to the 
3n x 3n matrix Uin t. 

To prove the equivalence of (4) and (13), we first 
eliminate the G matrix in (13) by using G -~ = 
L r -  ~ L- i. We obtain 

Uint = Q( L-~ BQ) r/~[int L-~ BQQ r. (14) 

To show that (4) and (14) are equivalent, we first have 
to show that ~h,t in (4) and (14) is identical and, 
second, that Rin t = (L -1 BQ) r. Since ~hnt is fully deter- 
mined by the frequencies ogy and a few constants, the 
first part of our proof is to show that the eigenvalues 
Aj.i, t, which are contained in (4) and (14), are identical. 
Here we have to assume, of course, that we use the 
same physical model for the force constants in both 
cases, so that (4) and (14) only appear to be different 
descriptions of the same physical situation. Since the 
force constants of the internal modes can be expressed 
naturally in the system of the 3 n - 6  symmetry 
coordinates, we use this system to begin with; thus our 
force constants are defined by the matrix F. Now we 
have to transform F to the Cartesian reference system 
in which Min t of  (5) is defined, and then show that the 
eigenvalues of (5) and (14) are identical. With (6) we 
obtain for the transformation 

Mcart = B r FB. (15) 

To obtain Mint, the mass normalization has to be 
performed; this yields 

Min t = (BQ)rFBQ. (16) 

Equation (16) represents the lattice dynamical descrip- 
tion of our force constant model of the internal modes, 
and thus contains the eigenvalues of (4) and (5). 

The eigenvalues of (14) are contained in (9)-(11), 
and in order to obtain them in a more useful form, we 
first rewrite the secular equation (9). Here we trans- 
form G -~ to E in a different way to that in (9)-(11) 
(there we had G-1 G = E) and start from 

B r G -1B = (QQr)-~. (17) 

Equation (17) may also be considered as a definition of 
the B matrix (Fadini, 1976, p. 43). [If B were a square 
(non-singular) matrix then (17) would be obtained by 
inversion of (8).] From (17), we deduce for the trans- 
formation of G -1 we are looking for, 

(BQ) r G- '  BQ = E. (18) 

Since F transforms in the same way as G -1, we now 
obtain for the secular equation instead of (9) 

det [ (BQ)rFBQ - AjE] = 0 ,  j =  1,. . .3n, (19) 

with six eigenvalues Aj = 0. Obviously, Min t of (16) is 
identical with the transformed force constant matrix in 
(19). Hence, the eigenvalues/~nt of (5) and (16), on the 
one hand, and of (9)-(11) and (19), on the other hand, 
are identical. 

In order to perform the second part of our proof, we 
deduce from (11) F = Lr-lAint L-l, insert this 
expression into Mint of  (16) and thus obtain for MIn t of 
(5) and (16) 

Min t : (L -1BQ) r A~n t L- '  BQ. (20) 

A comparison of (5) and (20) shows that Rin t = 
(L-1BQ) r, which completes our proof. Although 
neither L -1, nor B, nor Q are orthogonal, the product 
(L -~ BQ) r is part of the orthogonal matrix R. 

5. Calculation of  the mean-square amplitudes with 
eigenvector routines 

In order to avoid determining the eigenvalues of the FG 
matrix in the calculation of the mean-square 
amplitudes, Cyvin (1968, equation 7.53) and Oystein 
(1972) proposed series expansions. These series either 
converge poorly or not at all (Cyvin's series is only 
valid for frequencies with hog/2k n T< n). We shall 
show that it is not really necessary to use series 
expansions (or to search for better converging series) 
since, firstly, the eigenvalue problem can be more 
advantageously formulated than with the FG method 
and, secondly, there are certain methods for setting up 
the force constant matrix F, where the eigenvalues are 
known in advance. 

Selecting the matrix FG for determining the eigen- 
values is numerically inexpedient, since FG is not 
symmetric and L of (10) is not orthogonal. Thus, with 
the FG method, the inherent symmetry and ortho- 
gonality, which reduce the number of unknown 
elements, is not put to use. A matrix equivalent to FG 
which is at the same time symmetric, is obtained if first 
G is rewritten in the form G = (2(2 r. Methods for 
obtaining such a description are known, e.g. the 
Cholesky procedure (Zurmiihl, 1964). Instead of FG, 
(2rF(2 is now diagonalized and, instead of (10), we 
write 

T T C T F C T  = A,.t.  (21) 

T is orthogonal and its columns contain the eigen- 
vectors of (2rF(2, Thus, T can be calculated with a 
standard eigenvector program. With (11) and (21) we 
finally obtain L = (2T. 

If one also wishes to avoid calculating (2, one can use 
(instead of C) the matrix BQ and obtain (instead of 
C r F(2) Min t of (16). Diagonalization of Min t yields Ain t 

and Rin t. L and £ can no longer be calculated, but Uin t 
can be according to (4b). 
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Furthermore, with the establishment of F, there are 
some procedures with which the eigenvalues Ain t need 
not be determined. These are the 'Verfahren der 
ndchsten Ldsung', the 'Kopplungsstufenverfahren', the 
'parameter representation of Pulay & T6r6k' and the 
'procedure of Mann, Shimanouchi, Meal & Fan6' 
(Fadini, 1976, Ch. 6 and 7). With these procedures, F 
is set up in such a way that, within the numerical 
accuracy, the eigenvalues of FG are exactly equal to 
the squares of the observed frequencies. This, inciden- 
tally, is a necessary condition, since in any fit of the 
force constants to the observed frequencies the optimal 
fit (here the exact equivalence) should be obtained. We 
remark that the Kopplungsstufenverfahren yields not 
only the force constant matrix F but also the matrix L 
of (10) and (11). 

If one measures the observed frequencies .co/in cm-1, 
the eigenvalues are given by Aj = 5.89146toj. Thus, if 
one uses one of the above procedures for establishing F, 
there will be no difficulties in calculating the mean- 
square-amplitude matrix, since, on the one hand, the 

eigenvalues are known and, on the other hand, standard 
programs for evaluating the eigenvectors can be used. 
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Abstract 1. Introduction 

The contributions of the internal modes of urea 
molecules, CH4N20 , to the vibration tensors of their 
atoms are calculated at 0, 100 and 300 K. The 
calculations are based on IR and Raman data from the 
literature, and the force constants determined are of the 
Urey-Bradley type. The temperature dependence of the 
vibration tensors of the internal modes (diagonal 
components) is represented graphically in the 0-300 K 
region (interpolation over nine calculated points); in 
this region it is weak. Since, for urea, there are vibration 
tensors available which were determined by neutron 
diffraction, the contributions of the internal modes 
could be estimated. On average over the C, N, O atoms 
it is 1.8% at 300 K, 4.4% at 98 K and 5.8% at 60 K; 
on average over the H atoms it is 22.6% at 300 K, 
39.9% at 98 K and 46.3% at 60 K. 
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Researches in Inorganic Materials, Kurakake, Sakura-mura, 
Niihari-gun, Ibaraki-ken, 300-31 Japan. 
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The determination of the contributions of the internal 
modes of urea to the Debye-Waller factors is a by- 
product of our experimental investigation of the 
electron density distribution in urea crystals. In this 
investigation temperature factors for internuclear 
charge clouds are needed; this necessitates an analysis 
of the internal modes of the urea molecules (Scheringer, 
1977). Urea is a favourable example, since IR and 
Raman data are available for urea and deuterated urea 
and the vibration tensors of the nuclei have been deter- 
mined from neutron diffraction data at 300, 98 and 60 
K. 

2. Origin of data, assignments and method of 
calculation 

Measured IR and Raman data and assignments of the 
internal modes of solid urea are reported by 
Yamaguchi, Miyazawa, Shimanouchi & Mizushima 
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